preprocess

# 通用的预处理框架

import pandas as pd
import numpy as np
import scipy as sp # 文件读取
def read_csv_file(f, logging=False):
print("==========读取数据=========")
data = pd.read_csv(f)
if logging:
print(data.head(5))
print(f, "包含以下列")
print(data.columns.values)
print(data.describe())
print(data.info())
return data

Logistic Regression

# 通用的LogisticRegression框架

import pandas as pd
import numpy as np
from scipy import sparse
from sklearn.preprocessing import OneHotEncoder
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler # 1. load data
df_train = pd.DataFrame()
df_test = pd.DataFrame()
y_train = df_train['label'].values # 2. process data
ss = StandardScaler() # 3. feature engineering/encoding
# 3.1 For Labeled Feature
enc = OneHotEncoder()
feats = ["creativeID", "adID", "campaignID"]
for i, feat in enumerate(feats):
x_train = enc.fit_transform(df_train[feat].values.reshape(-1, 1))
x_test = enc.fit_transform(df_test[feat].values.reshape(-1, 1))
if i == 0:
X_train, X_test = x_train, x_test
else:
X_train, X_test = sparse.hstack((X_train, x_train)), sparse.hstack((X_test, x_test)) # 3.2 For Numerical Feature
# It must be a 2-D Data for StandardScalar, otherwise reshape(-1, len(feats)) is required
feats = ["price", "age"]
x_train = ss.fit_transform(df_train[feats].values)
x_test = ss.fit_transform(df_test[feats].values)
X_train, X_test = sparse.hstack((X_train, x_train)), sparse.hstack((X_test, x_test)) # model training
lr = LogisticRegression()
lr.fit(X_train, y_train)
proba_test = lr.predict_proba(X_test)[:, 1]

LightGBM

1. 二分类

import lightgbm as lgb
import pandas as pd
import numpy as np
import pickle
from sklearn.metrics import roc_auc_score
from sklearn.model_selection import train_test_split print("Loading Data ... ") # 导入数据
train_x, train_y, test_x = load_data() # 用sklearn.cross_validation进行训练数据集划分,这里训练集和交叉验证集比例为7:3,可以自己根据需要设置
X, val_X, y, val_y = train_test_split(
train_x,
train_y,
test_size=0.05,
random_state=1,
stratify=train_y ## 这里保证分割后y的比例分布与原数据一致
) X_train = X
y_train = y
X_test = val_X
y_test = val_y # create dataset for lightgbm
lgb_train = lgb.Dataset(X_train, y_train)
lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train)
# specify your configurations as a dict
params = {
'boosting_type': 'gbdt',
'objective': 'binary',
'metric': {'binary_logloss', 'auc'},
'num_leaves': 5,
'max_depth': 6,
'min_data_in_leaf': 450,
'learning_rate': 0.1,
'feature_fraction': 0.9,
'bagging_fraction': 0.95,
'bagging_freq': 5,
'lambda_l1': 1,
'lambda_l2': 0.001, # 越小l2正则程度越高
'min_gain_to_split': 0.2,
'verbose': 5,
'is_unbalance': True
} # train
print('Start training...')
gbm = lgb.train(params,
lgb_train,
num_boost_round=10000,
valid_sets=lgb_eval,
early_stopping_rounds=500) print('Start predicting...') preds = gbm.predict(test_x, num_iteration=gbm.best_iteration) # 输出的是概率结果 # 导出结果
threshold = 0.5
for pred in preds:
result = 1 if pred > threshold else 0 # 导出特征重要性
importance = gbm.feature_importance()
names = gbm.feature_name()
with open('./feature_importance.txt', 'w+') as file:
for index, im in enumerate(importance):
string = names[index] + ', ' + str(im) + '\n'
file.write(string)

2.多分类

import lightgbm as lgb
import pandas as pd
import numpy as np
import pickle
from sklearn.metrics import roc_auc_score
from sklearn.model_selection import train_test_split print("Loading Data ... ") # 导入数据
train_x, train_y, test_x = load_data() # 用sklearn.cross_validation进行训练数据集划分,这里训练集和交叉验证集比例为7:3,可以自己根据需要设置
X, val_X, y, val_y = train_test_split(
train_x,
train_y,
test_size=0.05,
random_state=1,
stratify=train_y ## 这里保证分割后y的比例分布与原数据一致
) X_train = X
y_train = y
X_test = val_X
y_test = val_y # create dataset for lightgbm
lgb_train = lgb.Dataset(X_train, y_train)
lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train)
# specify your configurations as a dict
params = {
'boosting_type': 'gbdt',
'objective': 'multiclass',
'num_class': 9,
'metric': 'multi_error',
'num_leaves': 300,
'min_data_in_leaf': 100,
'learning_rate': 0.01,
'feature_fraction': 0.8,
'bagging_fraction': 0.8,
'bagging_freq': 5,
'lambda_l1': 0.4,
'lambda_l2': 0.5,
'min_gain_to_split': 0.2,
'verbose': 5,
'is_unbalance': True
} # train
print('Start training...')
gbm = lgb.train(params,
lgb_train,
num_boost_round=10000,
valid_sets=lgb_eval,
early_stopping_rounds=500) print('Start predicting...') preds = gbm.predict(test_x, num_iteration=gbm.best_iteration) # 输出的是概率结果 # 导出结果
for pred in preds:
result = prediction = int(np.argmax(pred)) # 导出特征重要性
importance = gbm.feature_importance()
names = gbm.feature_name()
with open('./feature_importance.txt', 'w+') as file:
for index, im in enumerate(importance):
string = names[index] + ', ' + str(im) + '\n'
file.write(string)

XGBoost

1. 二分类

import numpy as np
import pandas as pd
import xgboost as xgb
import time
from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import train_test_split
train_x, train_y, test_x = load_data() # 构建特征 # 用sklearn.cross_validation进行训练数据集划分,这里训练集和交叉验证集比例为7:3,可以自己根据需要设置
X, val_X, y, val_y = train_test_split(
train_x,
train_y,
test_size=0.01,
random_state=1,
stratify=train_y
) # xgb矩阵赋值
xgb_val = xgb.DMatrix(val_X, label=val_y)
xgb_train = xgb.DMatrix(X, label=y)
xgb_test = xgb.DMatrix(test_x) # xgboost模型 ##################### params = {
'booster': 'gbtree',
# 'objective': 'multi:softmax', # 多分类的问题、
# 'objective': 'multi:softprob', # 多分类概率
'objective': 'binary:logistic',
'eval_metric': 'logloss',
# 'num_class': 9, # 类别数,与 multisoftmax 并用
'gamma': 0.1, # 用于控制是否后剪枝的参数,越大越保守,一般0.1、0.2这样子。
'max_depth': 8, # 构建树的深度,越大越容易过拟合
'alpha': 0, # L1正则化系数
'lambda': 10, # 控制模型复杂度的权重值的L2正则化项参数,参数越大,模型越不容易过拟合。
'subsample': 0.7, # 随机采样训练样本
'colsample_bytree': 0.5, # 生成树时进行的列采样
'min_child_weight': 3,
# 这个参数默认是 1,是每个叶子里面 h 的和至少是多少,对正负样本不均衡时的 0-1 分类而言
# ,假设 h 在 0.01 附近,min_child_weight 为 1 意味着叶子节点中最少需要包含 100 个样本。
# 这个参数非常影响结果,控制叶子节点中二阶导的和的最小值,该参数值越小,越容易 overfitting。
'silent': 0, # 设置成1则没有运行信息输出,最好是设置为0.
'eta': 0.03, # 如同学习率
'seed': 1000,
'nthread': -1, # cpu 线程数
'missing': 1,
'scale_pos_weight': (np.sum(y==0)/np.sum(y==1)) # 用来处理正负样本不均衡的问题,通常取:sum(negative cases) / sum(positive cases)
# 'eval_metric': 'auc'
}
plst = list(params.items())
num_rounds = 2000 # 迭代次数
watchlist = [(xgb_train, 'train'), (xgb_val, 'val')] # 交叉验证
result = xgb.cv(plst, xgb_train, num_boost_round=200, nfold=4, early_stopping_rounds=200, verbose_eval=True, folds=StratifiedKFold(n_splits=4).split(X, y)) # 训练模型并保存
# early_stopping_rounds 当设置的迭代次数较大时,early_stopping_rounds 可在一定的迭代次数内准确率没有提升就停止训练
model = xgb.train(plst, xgb_train, num_rounds, watchlist, early_stopping_rounds=200)
model.save_model('../data/model/xgb.model') # 用于存储训练出的模型 preds = model.predict(xgb_test) # 导出结果
threshold = 0.5
for pred in preds:
result = 1 if pred > threshold else 0

处理正负样本不均匀的案例

# 计算正负样本比例
positive_num = df_train[df_train['label']==1].values.shape[0]
negative_num = df_train[df_train['label']==0].values.shape[0]
print(float(positive_num)/float(negative_num))

主要思路

  1. 手动调整正负样本比例
  2. 过采样 Over-Sampling

    对训练集里面样本数量较少的类别(少数类)进行过采样,合成新的样本来缓解类不平衡,比如SMOTE算法
  3. 欠采样 Under-Sampling
  4. 将样本按比例一一组合进行训练,训练出多个弱分类器,最后进行集成

最新文章

  1. hdu Cup
  2. java 删除字符串中的反斜杠\
  3. 这是我用Microsoft Word 2010 直接发布的测试用博客
  4. C/C++中的sizeof
  5. N个数依次入栈,出栈顺序有多少种
  6. c++学习笔记4,调用派生类的顺序构造和析构函数(一个)
  7. RabbitMQ教程(一)——安装配置
  8. web.xml中<init-param>报错
  9. SpringBoot使用Nacos服务发现
  10. kubernetes容器删除时快速释放ip的方案
  11. 初识springcloud
  12. 关于Idea启动配置tomcat
  13. IAAS、SAAS 和 PAAS 的区别、理解
  14. 怎样从外网访问内网微服务Microservices?
  15. Windows向虚拟机Linux传输文件方法
  16. JQuery UI之Autocomplete(1)入门程序
  17. 【SPL标准库专题(9)】 Datastructures:SplObjectStorage
  18. Cache Buffer 区别
  19. 20155330 2016-2017-2 《Java程序设计》第九周学习总结
  20. KMP + 求最小循环节 --- HDU 1358 Period

热门文章

  1. ubuntu安装vncserver实现图形化访问
  2. XmlSerializer的GenerateTempAssembly性能问题例外
  3. C# 日志系统 log4net 配置及使用
  4. 23种设计模式之模板方法(Template Method)
  5. 【转】Openstack中oslo_config模块学习
  6. s3接口认证说明
  7. smarty模板的配置
  8. RGB颜色值与十六进制颜色码对照表
  9. TOP100summit 2017:【案例分享】魅族持续交付平台建设实践
  10. POJ 2240 - Arbitrage - [bellman-ford求最短路]